كلية الهندسة بشبرا
FACULTY OF ENGINEERING AT SHOUBRA

Fluid Mechanics [1]

MEC 121

$1^{\text {st }}$ Year- Mechanical Engineering $2^{\text {nd }}$ Term-(2024)

Dr. Samer Beskales

Lecturer at Mechanical Power Eng. Dept.
Faculty of Engineering, Benha University, Cairo, Egypt
website: www.bu.edu.eg/staff/sameraagaiby3
Faculty: https://feng.bu.edu.eg/, University: https://bu.edu.eg/

Credit

Based on

lecture notes and years of experience learning and teaching under the umbrella of Prof. Dr. Samir Sobhy

* Course Content

Lecture	Date	Topic	Instructor
1	13/2/2024	Fluid Properties	Prof. Dr. Samir Sobhy
2	20/2/2024	Hluid Properties	Prof. Dr. Samir Sobhy
3	27/2/2023	Kinematics	Prof. Dr. Samir Sobhy
4	5/3/2024	Monentum	Prof. Dr. Samir Sobhy
5	12/3/2024	Moment of momentum	Prof. Dr. Samir Sobhy
6	19/3/2024	Fluid Statics	Dr. Samer Beskales
7	26/3/2024	Hluid Statics	Dr. Samer Beskales
Midterm			
8	9/4/2024	Bernoulli's Equation	Prof. Dr. Ibrahim Shahin
9	16/4/2024	Application on Bernoulli	Prof. Dr. Ibrahim Shahin
10	23/4/2024	Hlow through pipes	Prof. Dr. Ibrahim Shahin
11	30/4/2024	Hlow through pipes	Prof. Dr. Ibrahim Shahin
12	715/2024	Dimensional Analysis	Dr. Samer Beskales
Oral exam			

Teaching Assistant: Eng Abanoub Zaki

* Course Materials

- All materials are posted on the official instructor page on the university website: Dr.Samer Beskales, www.bu.edu.eg/staff/sameraagaiby 3
- Using Shared links

* Text Books: Chapter [2]-Fluid Statics

Pages 76-136.

Pages 59-132.

Pages 65137

Course Assessment

كلية الهندسة بشبرا
hacuity of encimering at shoubra

Second Semester: Mechanical Power Engineering Program

Code	Subject	Contact Hours				Marks				
			$\begin{aligned} & \bar{\pi} \\ & \text { No } \\ & \end{aligned}$	$\begin{aligned} & \text { Z } \\ & 0 \\ & 0 \\ & 00 \\ & 0 \\ & 00 \end{aligned}$	$\begin{aligned} & \overline{\mathrm{I}} \\ & \stackrel{0}{0} \end{aligned}$				$\overline{\mathrm{O}}$	
MEC121	Fluid Mechanics (1)	2	1	2	5	45	30	75	150	3

* Fluid Statics

Chapter Two-Objectives

various
(1) Pressure measurements

- Determine the variation of pressure in a fluid at rest - Calculate pressure using kinds manometers

(2) Force on Submerged Surfaces

- Calculate the forces and moments exerted by a fluid at rest on plane or curved
submerged surfaces
of -

Buoyancy and stability

- Analyze the stability of floating and submerged bodies

Accelerated Fluid

- Analyze the variation of pressure in fluids that undergo linear acceleration and in rotating containers.

* Lab Experiments- Fluid Statics

(1) Bourdon Tube Calibration

3 Metacenter Determination

2 Center of Pressure and Hydrostatic Force

4 Free and Forced Vortex

What is the definition of PRESSURE ?

- Pressure is defined as a normal force exerted by a fluid per unit area.
- pressure only when we deal with a gas or a liquid and normal stress when deals with solids

$$
\text { Pressure }=\frac{\text { force }}{\text { Area }}=\frac{N}{m^{2}}=\text { Pa }
$$

* Units of pressure (SI Units)

- Pressure is Scalar quantity

$$
\frac{N}{m^{2}}=\frac{k g \cdot m}{S^{2} m^{2}}, \frac{k g}{S^{2} m}, M L^{1} T^{2}
$$

$$
1 \text { bar }=10^{5} \quad \mathrm{~Pa}=100 \mathrm{kPa}=0.1 \mathrm{MPa}
$$

$$
\text { Other units: } \mathrm{mm} \mathrm{H}_{20}, \mathrm{~mm} \mathrm{Hg}^{2}
$$

$$
1 \mathrm{~kg}_{f} / \mathrm{cm}^{2}=9.8 \mathrm{~N} / \mathrm{cm}^{2}=9.8 * 10^{4} \mathrm{~N} / \mathrm{m}^{2}=9.8 * 10^{4} \mathrm{~Pa}=0.98 \text { bar } \simeq 1 \mathrm{bar}
$$

Which produces the greater pressure on the balloon, the bed of nails, or the single nail?

Bed of Nails
$>$ https://www.youtube.com/watch?v=BCG62iC7NZc

Types of Pressure: Absolute, gage, and vacuum pressures
كلية الهندسة بشبرا hacutry of encimetrimg at shoubra

Pressure variation demonstrated with marshmallows (Boyle's Law)

Variation of Pressure with Depth

- consider a rectangular fluid element of height Δz, length Δx, and unit depth ($\Delta y=1$ into the page) in equilibrium, as shown

$$
\begin{aligned}
& \sum F_{z}=0 \quad F_{1}-F_{2}-w=0 \\
& P_{1}(\Delta x \Delta y)-P_{2}(\Delta x \Delta y)-\rho g(\Delta x \Delta y \Delta z)=0 \\
& P_{1}-P_{2}-\rho g(\Delta z)=0 \\
& P_{2}-P_{1}=-\rho g(\Delta z)=-\gamma(\Delta z)
\end{aligned}
$$

\square Conclusion:
The pressure of a fluid at rest increases with depth (as a result of added weight).

Under hydrostatic conditions, the pressure gauge gives the same reading at the bottom of each container at the same liquid and same level [h] from the free surface regardless of container geometry

- Effects of water pressure on ball filled with air

كلية الهندسة بشبرا
necurrv of Engimetenco at snouesa

- As the ball goes deep into the water, the pressure increases and the volume of air inside the ball decreases, according to the equation:

】1 1 】 $P_{1} V_{1}=P_{2} V_{2}$

$>$ https://www.youtube.com/watch?v=dL08xX4|BQg

كلية الهندسة بشبرا

- For Divers in deep water, could you imagine the breathing scenario? Explain and write your comment:

* The Titan Submarine Implosion - 3d Simulation

$>$ https://www.youtube.com/watch?v=opJISUHY1kU

* Operation of a Hydraulic Jack

- https://www.youtube.com/watch?v=qGQ4fojjwvQ

E Example (1) Operation of a Hydraulic Jack

- Consider a hydraulic jack being used in a car repair shop, as in Fig. 3-12. The pistons have an area of $A_{1}=0.8 \mathrm{~cm}^{2}$ and $A_{2}=0.04 \mathrm{~m}^{2}$. Hydraulic oil with

a specific gravity of 0.870 is pumped in as the small piston on the left side is pushed up and down, slowly raising the larger piston on the right side. A car that weighs $13,000 \mathrm{~N}$ is to be jacked up.
(a) At the beginning, when both pistons are at the same elevation $(h=0)$, calculate the force F_{1} in newtons required to hold the weight of the car.
(b) Repeat the calculation after the car has been lifted two meters $(h=2 \mathrm{~m})$. Compare and discuss.
Analysis (a) When $h=0$, the pressure at the bottom of each piston must be the same. Thus,

$$
P_{1}=\frac{F_{1}}{A_{1}}=P_{2}=\frac{F_{2}}{A_{2}} \rightarrow F_{1}=F_{2} \frac{A_{1}}{A_{2}}=(13,000 \mathrm{~N}) \frac{0.8 \mathrm{~cm}^{2}}{0.0400 \mathrm{~m}^{2}}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{2}=26.0 \mathrm{~N}
$$

At the beginning, when $h=0$, the required force is thus $F_{1}=26.0 \mathrm{~N}$.
(b) When $h \neq 0$, the hydrostatic pressure due to the elevation difference must be taken into account, namely,

كلية الهندسة بشبرا

$$
\begin{aligned}
& P_{1}=\frac{F_{1}}{A_{1}}=P_{2}+\rho g h=\frac{F_{2}}{A_{2}}+\rho g h \\
& F_{1}=F_{2} \frac{A_{1}}{A_{2}}+\rho g h A_{1}
\end{aligned}
$$

$$
=(13,000 \mathrm{~N}) \frac{0.00008 \mathrm{~m}^{2}}{0.04 \mathrm{~m}^{2}}
$$

$$
+\left(870 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.807 \mathrm{~m} / \mathrm{s}^{2}\right)(2.00 \mathrm{~m})\left(0.00008 \mathrm{~m}^{2}\right)
$$

$$
=27.4 \mathrm{~N}
$$

The Barometer

- The atmospheric pressure can be measured by inverting a mercury filled tube into a mercury container that is open to the atmosphere.
$\because P_{A}=P_{B} \quad$ Same Liquid Same Level
$\therefore P_{a t m}=\rho g h=(13600)(9.81)(76 / 1000)$

$$
=101396.16 \mathrm{~Pa}=101.4 \mathrm{Kpa}=0.1014 \mathrm{Mpa}
$$

The unit mmHg is also called the torr in honor of torricell.

Italian Evangelista Torricelli (1608-1647)

- Note that the length and the cross-sectional area of the tube have no effect on the height of the fluid column of a barometer, provided that the tube diameter is large enough to avoid surface tension (capillary) effects.

كلية الهندسة بشبرا

Quiz

1-If water instead of mercury were used to measure the standard atmospheric pressure, what is the needed water column in meter?

* Heavy Newspaper !

- Is the atmospheric pressure is constant at the same level all the times Comment on your answer.

كلية الهندسة بشبرا

Effect of atmospheric pressure change on Airplanes

1- why Airplanes need a longer runway at high altitudes?
Ans: To develop the required lift by increasing the velocity to compensate the reduction in the air density

$$
F L=(1 / 2) \rho u^{2} A C L
$$

Why Airplanes climb to very high altitudes for cruising ?
Ans: In order to reduce drag and thus achieve better fuel efficiency

$$
F D=(1 / 2) \rho u^{2} A C D
$$

* Relation between the pressure and boiling water

facuity of enginering at shousra

TABLE A-5			
Saturated water-Pressure table			
		Specific volume, $\mathrm{m}^{3} / \mathrm{kg}$	
Press., PkPa	Sat. temp., $T_{\text {sat }}{ }^{\circ} \mathrm{C}$	Sat. liquid, v_{f}	Sat. vapor, v_{3}
1.0	6.97	0.001000	129.19
1.5	13.02	0.001001	87.964
2.0	17.50	0.001001	66.990
2.5	21.08	0.001002	54.242
3.0	24.08	0.001003	45.654
4.0	28.96	0.001004	34.791
5.0	32.87	0.001005	28.185
7.5	40.29	0.001008	19.233
10	45.81	0.001010	14.670
15	53.97	0.001014	10.020
20	60.06	0.001017	7.6481
25	64.96	0.001020	6.2034
30	69.09	0.001022	5.2287
40	75.86	0.001026	3.9933
50	81.32	0.001030	3.2403
75	0476	0.001037	2.2172
100	99.61	0.001043	1.6941
	,	0.001043	1.6734
125	105.97	0.001048	1.3750
150	111.35	0.001053	1.1594
175	116.04	0.001057	1.0037
200	120.21	0.001061	0.88578
225	123.97	0.001064	0.79329
250	127.41	0.001067	0.71873
275	130.58	0.001070	0.65732

* Cavitation

- https://www.youtube.com/watch?v $=$ T7w6PbnRrxI

Pressure Measurement Devices

\square Manometers (Gravity-based)

A- Simple Manometers

- Piezometer Tube
- Single Column Manometers
$>$ U Tube
$>$ Inclined
B- Differential Manometers
- U-Tube
- Inverted
\square Pressure Gauges (Elastic deformation)
A- Bourdon Tube
\rightarrow C-Type
$>$ Helical
$>$ Spiral
B- Diaphragm pressure gauge
C- Bellows pressure gauge

- Pressure Measurement Devices
 A- Pressure Gage (Bourdon tube- C Type)

macuity of encimering at shoubra

French engineer and inventor Eugene Bourdon (1808-1884)

Internal mechanism (schematic)
\rightarrow https: $/ /$ www.youtube.com/watch?v=nE_n1/Cuz30

For the Other types of Bourdon Tubes :https://www.youtube.com/watch? v=p23uOHLOkwU

Simple Manometers

(1) Piezometer Tube

- The Piezometer is the simplest forms of manometers.

Used to measure a moderate pressure of liquids.

- It is a glass tube inserted perpendicular to the wall.
- Extended vertically to a specific height so the liquid can freely rise without overflowing.
* Limitation of Piezometers
- Can only measure gauge pressure
- Not used in measuring gas pressure
- Can not measure large pressures

For light liquids required a long tube

Open to atmosphere
كلية الهندسة بشبرا

Simple Manometers

(2) Single Column Manometer (U-Tube)

- It can be used to overcome the limitation of the Piezometers.
- It consists of a glass tube folded like the Letter U.
- In this type of manometers, one end is attached to the point where the pressure is to be measured and the other end is open to the atmospheric pressure.
- The tank pressure is represented by the difference in the manometer height (h)

كلية الهندسة بشبرا
mevirv or Encimetenve ar shousan

VACUUM

Simple Manometers

Single Column Manometer (Inclined- Slant)
كلية الهندسة بشبرا

- Is used with small pressure difference

B- Differential Manometer

\square U-tube

- Is used to measure the pressure difference between two points

- Inverted U-tube differential manometer will be used for measuring the vacuum pressure.
- Inverted U-tube differential manometer will have one inverted U-tube contained with light liquid.

Example (2) Measuring Pressure with a Manometer

A manometer is used to measure the pressure of a gas in a tank. The fluid used has a specific gravity of 0.85 , and the manometer column height is 55 cm , as shown in Fig. 3-21. If the local atmospheric pressure is 96 kPa , determine the absolute pressure within the tank.
SOLUTION The reading of a manometer attached to a tank and the atmospheric pressure are given. The absolute pressure in the tank is to be determined.
Assumptions The density of the gas in the tank is much lower than the density of the manometer fluid.
Properties The specific gravity of the manometer fluid is given to be 0.85 . We take the standard density of water to be $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
Analysis The density of the fluid is obtained by multiplying its specific gravity by the density of water,

$$
\rho=\mathrm{SG}\left(\rho_{\mathrm{H}_{2} \mathrm{O}}\right)=(0.85)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)=850 \mathrm{~kg} / \mathrm{m}^{3}
$$

Then from Eq. 3-13,

$$
\begin{aligned}
P & =P_{\mathrm{atm}}+\rho g h \\
& =96 \mathrm{kPa}+\left(850 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.55 \mathrm{~m})\left(\frac{1 \mathrm{~N}}{1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}\right)\left(\frac{1 \mathrm{kPa}}{1000 \mathrm{~N} / \mathrm{m}^{2}}\right) \\
& =100.6 \mathbf{k P a}
\end{aligned}
$$

Discussion Note that the gage pressure in the tank is 4.6 kPa .

- Why we did not use a piezometer to measure the pressure in the tank?

Example (3)
The pressure difference between an oil pipe and water pipe is measured by a double-fluid manometer, as shown in Fig. P3-50. For the given fluid heights and specific gravities, calculate the pressure difference $\Delta P=P_{B}-P_{A}$.

$$
\begin{aligned}
& \text { - Remember the following when dealing with } \\
& \text { manometer problem } \\
& +\rho \mathrm{gh} \\
& \gamma-(\gamma /) *(S G) \\
& \text { Down } \\
& \text { Up } \\
& P_{A}+\gamma_{w}(0.55 m)+\gamma_{w}(13.5)(0.2) \\
& -\gamma_{w}(1.26)(0.42)+\gamma_{w}(0.88)(0.1)=P_{B} \\
& \Delta P=P_{B}-P_{A}=27554.32 N / m^{2}
\end{aligned}
$$

Example (4)

- Find the absolute pressure at bottom of the shown tank?

كلية الهندسة بشبرا

Example (5)

- Write down the equation of the shown differential manometer between point 1 and 2

A flow section or flow device

$$
P_{1}+\rho_{1} g(a+h)-\rho_{2} g h-\rho_{1} g a-P_{2}
$$

Example (6) Measuring Pressure with a Multifluid Manometer

- The water in a tank is pressurized by air, and the pressure is measured by a mul-- tifluid manometer as shown in Fig. 3-24. The tank is located on a mountain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa . Determine the air pressure in the tank if $h_{1}=0.1 \mathrm{~m}, h_{2}=0.2 \mathrm{~m}$, and $h_{3}=0.35 \mathrm{~m}$. Take the densities of water, oil, and mercury to be $1000 \mathrm{~kg} / \mathrm{m}^{3}, 850 \mathrm{~kg} / \mathrm{m}^{3}$, and $13,600 \mathrm{~kg} / \mathrm{m}^{3}$, respectively.

$$
P_{1}+\rho_{\text {water }} g h_{1}+\rho_{\text {oil }} g h_{2}-\rho_{\text {mercury }} g h_{3}=P_{2}=P_{\text {atm }}
$$

Solving for P_{1} and substituting,

$$
\begin{aligned}
P_{1}= & P_{\text {atm }}-\rho_{\text {water }} g h_{1}-\rho_{\text {oil }} g h_{2}+\rho_{\text {mercury }} g h_{3} \\
= & P_{\text {atm }}+g\left(\rho_{\text {mercury }} h_{3}-\rho_{\text {water }} h_{1}-\rho_{\text {oil }} h_{2}\right) \\
= & 85.6 \mathrm{kPa}+\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left[\left(13,600 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.35 \mathrm{~m})-\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.1 \mathrm{~m})\right. \\
& \left.-\left(850 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.2 \mathrm{~m})\right]\left(\frac{1 \mathrm{~N}}{1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}\right)\left(\frac{1 \mathrm{kPa}}{1000 \mathrm{~N} / \mathrm{m}^{2}}\right) \\
= & \mathbf{1 3 0} \mathrm{kPa}
\end{aligned}
$$

Example (7) The maximum blood pressure in the upper arm of a healthy person is about $\mathbf{1 2 0} \mathbf{~ m m H g}$. If a vertical tube open to the atmosphere is connected to the vein in the arm of the person, determine how high the blood will rise in the tube. Take the density of the blood to be $\mathbf{1 0 4 0} \mathbf{~ k g} / \mathrm{m} 3$

كلية الهندسة بشبرا mecurr of enomene enve at snouven

$$
P=\rho_{\mathrm{blood}} g h_{\mathrm{blood}}=\rho_{\text {mercury }} g h_{\text {mercury }}
$$

$$
h_{\text {blood }}=\frac{\rho_{\text {mercury }}}{\rho_{\text {blood }}} h_{\text {mercury }}=\frac{13,600 \mathrm{~kg} / \mathrm{m}^{3}}{1040 \mathrm{~kg} / \mathrm{m}^{3}}(0.12 \mathrm{~m})=1.57 \mathrm{~m}
$$

Note that the blood can rise about one and a half meters in a tube connected to the vein. This explains why IV tubes must be placed high to force a fluid into the vein of a patient.

Lab Experiment no. 1 Bourdon Tube Calibration

- Objective: To calibrate a Bourdon pressure gauge using a dead weight tester and determine the

كلية الهندسة بشبرا gauge error for increasing and decreasing pressure
1- Remove the piston from the apparatus and fill the cylinder with water to above the overflow hole (see Figure)
2-Remove any air bubbles from the transparent tube by tilting and tapping the apparatus
3- Position the apparatus on a bench and replace the piston. Make sure that the apparatus is absolutely level.
4- Gently rotate the piston to prevent it sticking in the cylinder, then record the Bourdon gauge reading.
5 - Add weights to the piston in convenient increments and at each increment, record the gauge reading and the load on the piston.
6 - Now, successively remove the weights from the piston and take readings as before so that you obtain results from decreasing pressure
7 record the cross sectional area (a) and the weight W1 of the piston.
8_ calculate the values of the true pressure Pt as $\quad P_{t}=\frac{W \times 9,81}{a} \times 10^{-3} \mathrm{kN} / \mathrm{m}^{2}$
9- Plot graphs of gauge reading P against true pressure Pt for increasing and decreasing pressure.

10- obtain values of the gauge error (P-Pt) and plot a graph of gauge error against Pt.

* Report

كليةالهندسة بشبرا

$>$ Required a report included the different types of pressure measurement instruments
\rangle Pressure measurement instruments may be grouped into four categories as stated below:
(1) Gravity-based
(2) Elastic deformation
(3) Gas behavior
(4) Electric output

- (Deadline. Oral exam day on week no. 14)

Thank you

